Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 25, 2026
-
Free, publicly-accessible full text available June 27, 2026
-
Free, publicly-accessible full text available May 6, 2026
-
This position paper explores the challenges and opportunities for high-quality immersive volumetric video streaming for multiple users over millimeter-wave (mmWave) WLANs. While most of the previous work has focused on single-user streaming, there is a growing need for multi-user immersive applications such as virtual collaboration, classroom education, teleconferencing, etc. While mmWave wireless links can provide multi-gigabit per second data rates, they suffer from blockages and high beamforming overhead. This paper investigates an environment-driven approach to address the challenges. It presents a comprehensive research agenda that includes developing a collaborative 3D scene reconstruction process, material identification, ray tracing, blockage mitigation, and cross-layer multi-user video rate adaptation. Our preliminary results show the feasibility and identify the limitations of existing solutions. Finally, we discuss the open challenges of implementing a practical system based on the proposed research agenda.more » « less
-
With MIMO and enhanced beamforming features, IEEE 802.11ay is poised to create the next generation of mmWave WLANs that can provide over 100 Gbps data rate. However, beamforming between densely deployed APs and clients incurs unacceptable overhead. On the other hand, the absence of up-to-date beamforming information restricts the diversity gains available through MIMO and multi-users, reducing the overall network capacity. This paper presents a novel approach of "coordinated beamforming" (called CoBF) where only a small subset of APs are selected for beamforming in the 802.11ay mmWave WLANs. Based on the concept of uncertainty, CoBF predicts the APs whose beamforming information is likely outdated and needs updating. The proposed approach complements the existing per-link beamforming solutions and extends their effectiveness from link-level to network-level. Furthermore, CoBF leverages the AP uncertainty to create MU-MIMO groups through interference-aware scheduling in 802.11ay WLANs. With extensive experimentation and simulations, we show that CoBF can significantly reduce beamforming overhead and improve network capacity for 802.11ay WLANs.more » « less
An official website of the United States government

Full Text Available